Evaluating the Accuracy of Morphological Identification of Larval Fishes by Applying DNA Barcoding
نویسندگان
چکیده
Due to insufficient morphological diagnostic characters in larval fishes, it is easy to misidentify them and difficult to key to the genus or species level. The identification results from different laboratories are often inconsistent. This experiment aims to find out, by applying DNA barcoding, how inconsistent the identifications can be among larval fish taxonomists. One hundred morphotypes of larval fishes were chosen as test specimens. The fishes were collected with either larval fish nets or light traps in the northern, southern and northwestern waters of Taiwan. After their body lengths (SL) were measured and specimen photos were taken, all specimens were delivered, in turn, to five laboratories (A-E) in Taiwan to be identified independently. When all the results were collected, these specimens were then identified using COI barcoding. Out of a total of 100 specimens, 87 were identified to the family level, 79 to the genus level and 69 to the species level, based on the COI database currently available. The average accuracy rates of the five laboratories were quite low: 80.1% for the family level, 41.1% for the genus level, and 13.5% for the species level. If the results marked as "unidentified" were excluded from calculations, the rates went up to 75.4% and 43.7% for the genus and species levels, respectively. Thus, we suggest that larval fish identification should be more conservative; i.e., when in doubt, it is better to key only to the family and not to the genus or species level. As to the most misidentified families in our experiment, they were Sparidae, Scorpaenidae, Scombridae, Serranidae and Malacanthidae. On the other hand, Mene maculata and Microcanthus strigatus were all correctly identified to the species level because their larvae have distinct morphology. Nevertheless, barcoding remains one of the best methods to confirm species identification.
منابع مشابه
Identification of Qanat fishes in Taft and Mehriz (Yazd-Iran) via DNA barcoding
In this study fish in 8 Qanats in Taft and Mehriz townships of the Yazd Province were compared to specimens from Sirvan, Karun, Mond, Kor Rivers, Kerman and Namak basins. In the studied Qanats, Capoeta saadi and Cyprinion sp. were observed. The haplotypic diversity in Qanats was zero. Capoeta saadi haplotype observed in Qanats was similar to haplotype observed in the Kor basin. Cyprinion sp. ha...
متن کاملResearch Article: Molecular genetic divergence of five genera of cypriniform fish in Iran assessed by DNA barcoding
The present study represents a comprehensive molecular assessment of some family of freshwater fishes in Iran. We analyzed cytochrome oxidase I (COI) sequences for five genus of cypriniform fishes from Iran. The present investigation provides data on genetic structure of some species of Nemachilidae including Paraschistura bampurensis, Oxynoemacheilus kiabii and Turcinemacheilus saadii and Leuc...
متن کاملSpecies identification reveals mislabeling of important fish products in Iran by DNA barcoding
This study reports on the molecular identification of fish species from processed products which had a priori been classified as belonging to 5 important species in Iran for human consumption. DNA barcoding using direct sequencing of an approximately 650bp of mitochondrial Cytochrome oxidase subunit I (COI) gene revealed incorrect labeling of Narrow-barred Spanish mackerel samples. High occurre...
متن کاملIdentification of Crocus sativus and its Adulterants from Chinese Markets by using DNA Barcoding Technique
Background: Saffron (Crocus sativus L.) is a common but very expensive herbal medicine. As an important traditional medicine, it has an outstanding effect in treating irregular and painful menstruation. Recently, the over-demand tendency of saffron results in an unusual phenomenon in the medicinal markets. Adulterants and saffron-like substitutes are intentionally mixed into medicinal markets a...
متن کاملDNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.
BACKGROUND AND AIMS Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013